Solving Corrosion Under Insulation Utilizing FOAMGLAS® Cellular Glass Insulation Systems

NACE International
Jubail, Kingdom of Saudi Arabia
November 30, 2010

Steven T. Oslica
Director of Marketing
FOAMGLAS® Industry

Peter Bakker
Regional Manager
Middle East
www.foamglas.com

Pittsburgh Corning Global
Pittsburgh Corning Asia
Pittsburgh Corning Corporation
Pittsburgh Corning Europe
Advantages: Exceptional Service...Worldwide and Anytime

- Global network of sales and engineering professionals
- The only cellular glass manufacturer with a truly global reach
Corrosion: Ugly and Hazardous
98% of all insulation system failures are caused by moisture intrusion.
Problems Associated With Wet Insulation

Corrosion Under Insulation

Affects heat gain or loss which leads to increased energy consumption

Increased boil-off from low temperature tanks and risk of solidification of certain materials designed to operate at high temperatures.

Damage can also result within support systems due to increases in the weight of the saturated insulation system.
CORROSION UNDER INSULATION
THE PROBLEMS WITH CORROSION UNDER INSULATION

- THE RATE OF CORROSION OCCURS AT A MUCH HIGHER SPEED

- THE CORROSION UNDER THE INSULATION CAN’T BE VISUALLY DETECTED UNTIL FAILURE OCCURS
CONSEQUENCES

• **COSTS** INDUSTRY MILLIONS OF DOLLARS

 Replacement cost of corroded equipment
 Loss of productivity/production

• **SAFETY ISSUES**

 CUI can go undetected until leaks occur
 Leaks can be hazardous/fatal with combustible liquids or gases at high temperatures or pressures
FACTORS INCREASING THE POTENTIAL FOR CUI

- AERATED WATER MUST BE PRESENT
- RATE OF CORROSION DEPENDS ON THE CHEMICAL CONTENT OF WATER
- RATE OF CORROSION DEPENDS ON THE TEMPERATURE
The Two Primary Water Sources Involved In CUI Of Carbon Steel Are:

- Infiltration from external sources
- Condensation (internal)
Examples of External Water Sources

- Rainfall
- Drift from Cooling towers
- Condensation falling from cold service equipment
- Steam Discharge
- Process liquid spills
- Spray from fire sprinklers, deluge systems, washdowns, etc.
The Chemical Content of the Water Can Affect the Rate of Corrosion Two Ways:

- Contaminants can increase the electrical conductivity of the water thereby increasing the corrosion rate.

- Contaminants causing low pH solutions reduce the protection offered by product scale on carbon steel.
Low pH Contaminants Come From Two Primary Sources:

- **External to the insulation**
- **Contaminants leached from the insulation**

NACE reports - Chlorides and Sulfates are the principle contaminants found under insulation. These contaminants are particular detrimental because they are highly soluble in water and these aqueous solutions have a very high electrical conductivity.
Effects of pH on Corrosion Rate

Relative Corrosion Rate

PH

0 20 40 60 80 100 120 140
3 4 5 6 7 8
• Carbon steel operating in the temperature range of ambient temperatures (prox.) to 300°F (149°C) is at the risk of CUI.

• Within 32°F to 212°F (0°C to 100°C) the Rate of corrosion increasing with temperature doubling every 27°F to 36°F (-2.8°C to 2°C).

• For carbon steel the maximum corrosion rate has been given as ambient to 250°F (121°C).

• For stainless steel there appears to be little or no problem of stress cracking corrosion below 120°F and above 250°F (49°C to 121°C).

• Cyclic Temperatures will accelerate metal corrosion.

• Lines below 25°F (-4°C) can also be subjected to CUI because of extended plant shutdowns.
RATE OF CORROSION DEPENDS ON THE TEMPERATURE

Temperature (F) vs. Corrosion Rate (mils/yr)

- Chemical Plant Measurements

NACE International
Common Approaches for Minimizing Corrosion Under Insulation

• **Prevent Water Entry into the Insulation System**

 Use of weather and or vapor retarders

 Problem - they are not long term solutions

• **Provide a Physical Barrier**

 These barriers are usually paints or mastics

 Problems - thin coatings that require good adhesion and do require periodic maintenance. Usually require controlled temperatures during application.

• **Select an Insulation that will**

 Minimize water intrusion

 Not wick or retain water

 Have low chloride content
• Will help to minimize water intrusion and retention since it is impermeable

• Will not accelerate the corrosion of carbon steel or the stress corrosion of stainless steel. pH >7

• Can be used as a component of a corrosion resistant barrier

• Very low chloride content for use in contact with austenitic stainless steel
Definition of Thermal Conductivity

The amount of heat transferred through a unit area of a material in a unit time, through a unit thickness, with a unit of temperature difference between the surface of the two opposite sides.

Heat flow = \(\frac{\text{Temperature difference}}{\text{Thickness/Conductivity}} \)

\[K = \text{Btu in/h ft}^2 \text{ ° F} \]

![Graph showing different materials and their thermal conductivity values.](Image)
Thermal Conductivity of Insulation vs. Water Content

Thermal Conductivity of Insulation Materials Under Ideal Laboratory Conditions (DRY)

Thermal Conductivity of Insulation Materials with 3% Water Content by Volume

- Cellular Glass
- Mineral Wool
- Calcium Silicate
- Perlite
Silicone treatments are designed as water repellents on high temperature insulation materials. However these “binders/repellents” begin to deteriorate at temperatures as low as 175°F and are typically completely gone by 450°F. Other binders are subject to deterioration at low to moderate service temperatures over extended periods of atmospheric exposure.

SPROULE WR-1200

WATER ABSORPTION HEAT AGING TEST (a)

<table>
<thead>
<tr>
<th>TYPE OF INSULATION (c)</th>
<th>% AMBIENT WATER ABSORPTION (b)</th>
<th>REMARKS (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400°F</td>
<td>500°F</td>
</tr>
<tr>
<td>Mineral Wool</td>
<td>128</td>
<td>395</td>
</tr>
<tr>
<td>Fiber Glass</td>
<td>210</td>
<td>—</td>
</tr>
<tr>
<td>Calcium Silicate</td>
<td>443</td>
<td>466</td>
</tr>
<tr>
<td>Other Perlites (e)</td>
<td>29</td>
<td>41</td>
</tr>
<tr>
<td>Sproule WR-1200</td>
<td>27</td>
<td>28</td>
</tr>
</tbody>
</table>

(d) Loss of strength was caused by failure of the insulation binder. (Note that cellular glass was not tested since it is presumed to be water resistant at all temperatures.)
Absorption & Retention of Water

Max Moisture By Volume

- Cellular Glass
- Polyiso
- Phenolic
- Perlite
- Fiberglass
- Mineral Wool
- Calcium Silicate

Published Absorption Values % Volume
- Cell. Glass - 0.2%
- Polyiso - 2%
- Phenolic F. - 0.5%
- Perlite - 0.4%
- Fiberglass - 0.2%
- Mineral W. - Not Available
- Calsil - Not Available

Data generated by submersion, vapor gradient, and steam exposure.

Data Source- Dr. Chester P. Smolenski, V.M. Liss, PC Lab results
Water Absorption of Above Ambient Insulation

![Graph showing water absorption of different insulation materials.](image-url)
Service Temperature: -450°F to 900°F (-268°C to 482°C)

Multiple Bonding Techniques for high temperature ranges

- Hydrocal B-11 Bonded
- PC 136 Bonded (low chloride)
- Strata Fab Billets
- PC 400 Bore coating

Check with Pittsburgh Corning Technical for the best fab adhesive for your application.
Mastics and Fabrics

<table>
<thead>
<tr>
<th>Title</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>PITTCOTE® 300</td>
<td>Asphaltic Vapor Retarder</td>
</tr>
<tr>
<td></td>
<td>6 to 8 Gal/100ft2, .003 Perm-in</td>
</tr>
<tr>
<td></td>
<td>Service Temp -40 to 200F (-40 to 200C)</td>
</tr>
<tr>
<td>PITTCOTE® 300FR</td>
<td>Fire Resistant Vapor Retarder</td>
</tr>
<tr>
<td></td>
<td>6 to 8 Gal/100ft2, .003 Perm-in</td>
</tr>
<tr>
<td></td>
<td>Service Temp. -60 to 325F (-50 to 160C)</td>
</tr>
<tr>
<td>PITTCOTE® 404</td>
<td>Acrylic -Latex Weather Barrier</td>
</tr>
<tr>
<td></td>
<td>6 to 8 Gal/100ft2, .4 Perm-in</td>
</tr>
<tr>
<td></td>
<td>Service Temp. -30 to 180F (-34 to 80C)</td>
</tr>
<tr>
<td>PC® Fabric 79</td>
<td>100% Polyester-6x5.5 Mesh/inch</td>
</tr>
</tbody>
</table>
Vapor Retarder Jacketing

PITTWRAP®
- Reinforced Polymer Modified Bituminous Heat Sealed 125 mil
- Service Temperature 20 to 190°F (-6 to 87°C)
- .002 Perm-inch, 100 SqFt/Roll

PITTWRAP® SS
- Reinforced Polymer Modified Bituminous Self Sealed 70 mil
- Service Temperature -25 to 170°F (-31 to 77°C)
- .002 Perm-inch, 100 SqFt/Roll

PITTWRAP® CW PLUS (NEW IW50)
- Reinforced Polymer Modified Bituminous Self Sealed 50 mil
- Service Temperature -25 to 100°F (-31 to 37°C)
- .002 Perm-inch, 147 SqFt/Roll

PITTWRAP® CW30
- Reinforced Polymer Modified Bituminous Self Sealed 30 mil
- Service Temperature -25 to 100°F (-31 to 37°C)
- .002 Perm-inch, 295 SqFt/Roll
Joint Sealants

Title

PITTSEAL® 444N

PITTSEAL® CW Sealant

Properties

Butyl Rubber
84% Solids, .008 Perm-inch
Service Temp. -70 to 180 F
(-56 to 80C)
NRC 1.36 chemical requirements

MS Polymer Based
>90% Solids, .0015 Perm-inch
Service Temp. -40 to 200F
(-40 to 93C)
Flame Spread/Smoke Dev. <10
Installation Adhesives

Title

PC® 88

Properties

Two Part Adhesive
Service Temp. -70 to 180 F
(-57 to 80°C)
Working Time 1 to 1 1/2 Hrs
.005 Perm Rating

PC®
RTV 450

Properties

High Temp. Silicone Adhesive
Service Temp. -50 to 400 F Cont.
(-46 to 200°C)
Max. Intermittent Temp. 450 F
Full Cure 24 Hrs
Fabrication Adhesives

<table>
<thead>
<tr>
<th>Title</th>
<th>Properties</th>
<th>Competitive Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROCAL® B-11</td>
<td>Cementitious Fabrication Adhesive</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Service Temp. -450 to 900 F (-268 to 480°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Working Time 20 to 30 Min.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical but not coupon test requirements of NRC 1.36</td>
<td></td>
</tr>
<tr>
<td>PC® 136</td>
<td>Cementitious Fabrication Adhesive</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Service Temp. -100 to 900 F (-73 to 480°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Working Time 20 to 30 Min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical and coupon requirements of NRC 1.36</td>
<td></td>
</tr>
</tbody>
</table>
Anti Abrasive Coatings

<table>
<thead>
<tr>
<th>Title</th>
<th>Properties</th>
<th>Competitive Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROCAL® B-11</td>
<td>Cementitious Coating N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service Temp. -450 to 900 F (-268 to 480°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Working Time 20 to 30 Min.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meets chemical but not coupon test requirements of NRC 1.36</td>
<td></td>
</tr>
<tr>
<td>PC® 136</td>
<td>Cementitious Coating N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service Temp. -100 to 900 F (-73 to 480°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Working Time 20 to 30 Min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coupon and chemical requirements NRC 1.36</td>
<td></td>
</tr>
</tbody>
</table>
FOAMGLAS® APPLICATIONS

Temperature Range 75F to 180 F (24° C to 82° C)

Insulation may be fabricated with Hydrocal® B-11 or ASTM D312, Type III hot asphalt Fabrication Adhesive. Stratafab® system may be considered. V-Groove method may be used for above ambient applications.

Application Requirements:
- Insulation may be applied in a single layer.
- Pipe and vessel insulation may be banded or taped in place using fiberglass reinforced tape. The wires should not be used as banding material. Mastics should only be considered for surfaces not covered with metal.
Temperature Range 181 F to 400 F (83° C to 204° C)

Applications Steam, Heat Transfer, Hot Process

Fabrication Requirements: Insulation must be fabricated using Hydrocal® B-11 fabrication adhesive for non Stratafab® systems. The use of hot asphalt bonded insulation is not recommended. The V-Groove, HTAA bore coated, or Stratafab® system should be considered.

Application Requirements: Insulation may be installed in a single layer. Small diameter pipe insulation may be secured by either banding or tape. Tie wires not be used to secure insulation. Joint sealant is not required. Mastics should only be considered for surfaces not covered with metal.
1. Energy Analysis Reports
2. Field Energy Surveys
3. Interactive Web site www.foamglas.com
4. Written Guidelines and Specification Writing Assistance
5. A global network of experts
THANK YOU